Cuyama Basin Groundwater Sustainability Agency

Sustainability Agency Meeting and Public Workshops

March 6, 2019

Agenda

- Welcome and Introduction
- SGMA Background and GSP Development Overview
- Cuyama Basin Water Budget
- Projects and Management Actions
- GSP Implementation Plan
- Wrap Up and Next Steps

Cuyama Basin Groundwater Sustainability Agency

SGMA Background and GSP Development Overview

March 6, 2019

Some SGMA Fundamentals

- Requires a Groundwater Sustainability Plan (GSP) be prepared and submitted by January 2020
- Requires Basin become sustainable by January 2040
- Requires GSP development be open and transparent, with stakeholder and public input
- Multiple specific requirements
 - Publicly-accessible database
 - Hydrologic Conceptual Model (HCM)
 - Accounting of all water sources and uses
 - **Opportunities for management areas**

Cuyama Basin Groundwater Sustainability Plan – Planning Roadmap Planning Roadmap **SGMA** Background Groundwater Workshops (English and Spanish) 101 **GSA Board Meeting** Cuyama Valley & **Basin Conditions** Standing Advisory Committee Meeting Conceptual Water Model Basin Model, Forecasts & Water Budget Sustainability Goals Sustainability Vision & Criteria Projects & **Action Ideas Management Actions** Implementation Problem Statement Plan Groundwater Groundwater Sustainability Plan Sustainability Plan Approvals 2018 2019 & CURRAN Jan Apr Jul Oct Jan Apr Jul Oct Jan

GSP Discussion Approach & Terminology

GSP Discussion Approach & Terminology

GSP Sections

- 1. Introduction
 - 1.1 GSA Authority & Structure
 - 1.2 Plan Area
 - **1.3 Outreach Documentation**
- 2. Basin Settings
 - 2.1. HCM
 - 2.2 GW Conditions
 - 2.3 Water Budget
 - Appendix: Numerical GW Model Documentation

3. Undesirable Results

- 3.1 Sustainability Goal
- 3.2 Narrative/Effects
- **3.2 ID Current Occurrence**

4. Monitoring Networks
4.1 Data Collection/Processing
4.2 GSP Monitoring Networks

- 5. Sustainability Thresholds 5.1 Threshold Regions
 - 5.2 Minimum Thresholds, Measurable Objectives, Margin of Operational Flexibility, Interim Milestones
- 6. Data Management System Appendix: DMS User Guide
- 7. Projects & Management Actions
- 8. GSP Implementation

Cuyama Basin Groundwater Sustainability Agency

Cuyama Basin Water Budget

March 6, 2019

Approach for Cuyama Basin Model Development

- Develop a Robust and Defensible Integrated Water Resources Model
 - Robust Model Grid
- Agricultural and Domestic Water Demands
- Include physical features affecting movement of surface and groundwater
- Consider interaction between groundwater and surface water systems

Water Budgets - Time Frames

Historical Conditions

Historical hydrology, land use and population (1995-2015)

Current Conditions

2017 land use and population 1967 - 2016 historical hydrology

Future Conditions

Year 2040 land use and population - Assumed to be the same as Current Conditions 1967- 2016 historical hydrology <u>With and without</u> climate change

Future Conditions

Annual Precipitation

(based on adjusted PRISM dataset)

Average Annual Precipitation (50 years)

Land Use

(based on historical information and ARMA Model)

Alfalfa and Irrigated Pasture 📕 Fruit and Nut Trees 🔳 Vineyard 📃 Field Crops 📃 Truck Crops 💻 Grain 📄 Domestic

Future Conditions Land Surface Water Budget: Basin-Wide

DRAFT

31

Future Conditions Groundwater Budget: Basin-Wide

Future Conditions Average Annual Groundwater Level Change San Luis Obispo County Kern County

Cuyama

RD AN

Future Conditions Average Annual Groundwater Level Change

Kern County

Ventura County

Questions and Discussion – Water Budgets

Clarifying Questions?

- Projected future conditions and trends
- Water budgets under current and future conditions
- In addition to what has been presented, what other information would help you understand water resources in the Cuyama Valley?

Cuyama Basin Groundwater Sustainability Agency

Cuyama Basin Management Areas

March 6, 2019

Potential Management Area Uses

Provided by Regulation

- Differentiate rationale for Minimum Thresholds and Measurable Objectives
- Establish different concentration or types of monitoring

At GSA Board's Discretion

- At GSA's discretion, Management Areas *could* be used to:
 - Delegate authorities to other jurisdictions
 - Perform projects and management actions discretely by Management Area
 - Allocations
 - Costs

Future Conditions Average Annual Groundwater Level Change

Kern County

Ventura County

Cuyama Basin Groundwater Sustainability Agency

Projects and Management Actions

March 6, 2019

Projects and Management Actions to Close the Gap Between Water Supplies and Demands

- Demand management actions to reduce groundwater pumping
- Water supply projects to increase available supplies

Demand Management/Allocation Approach

- Under SGMA, GSAs have authority to establish groundwater extraction allocations
- SGMA and GSPs adopted under SGMA cannot alter water rights
- Potential components of a demand management approach:
 - Pumping restrictions/allocations
 - Water accounting
 - Water metering
 - Water market
 - **Fees**
 - By pumping amount or acreage

Example Glide Paths

Numerical Modeling Analysis of Pumping Reductions Required to Achieve Sustainability

- Simulated pumping reductions (without water supply projects) to eliminate groundwater overdraft
- Assumptions:
 - Idle lands are converted to native vegetation.
 - In each scenario run, total crop acreage was reduced by a constant percentage through the 50 year period
 - Decrease in crop acreage results in a decrease in groundwater pumping, deep percolation and agricultural evapotranspiration.

Future Conditions Average Annual Groundwater Level Change

Kern County

Ventura County

Future Conditions – Pumping Reductions OnlyRAFT Scenario – Central Developed Region

Future Conditions – Pumping Reductions OnlyRAFT Scenario – Ventucopa Region

Pumping reductions needed to eliminate cumulative decline in storage

	BASELINE	REDUCED PUMPING SCENARIO
INFLOWS		
Deep Percolation (+)	4,200	3,500
Gain from Stream (+)	1,300	1,300
Subsurface Inflow(+)	700	700
OUTFLOWS		
Pumping (-)	6,800	5,500
STORAGE CHANGE	-600	0

Projected change in storage under Baseline and reduced pumping conditions

Future Conditions – Pumping Reductions OnlyRAFT Scenario – Ventucopa Region

Pumping reductions needed to eliminate cumulative decline in storage

		REDUCED PUMPING	
	BASELINE	SCENARIO	
INFLOWS			
Deep Percolation (+)	4,200	3,500	
Gain from Stream (+)	1,300	1,300	
Subsurface Inflow(+)	700	700	
OUTFLOWS			
Pumping (-)	6,800	5,500	
STORAGE CHANGE	-600	0	

Projected change in storage under Baseline and reduced pumping conditions

Projects and Management Actions to Close the Gap Between Water Supplies and Demands

- Demand management actions to reduce groundwater pumping
- Water supply projects to increase available supplies

Potential Water Supply Projects

GSA support for new pumping wells for local communities

- Cuyama CSD, towns of Cuyama & Ventucopa
- GSA implementation of projects to increase net Basin water supply
 - Precipitation Enhancement
 - Forest/Rangeland Management
 - Flood/Stormwater Capture

Water Supply Imports via Transfer/Exchange

Precipitation Enhancement

- Potential Yield: ~1,000-5,000 AF/year
- Estimated Cost: \$20-30/acre-foot
- Planning Horizon: 5-10 years
- Description: The introduction of atmospheric silver iodide to serve as condensation nuclei that would increase snowfall over mountain regions; rainfall could potentially increase by 5-15% in the Cuyama Basin
- Potential Implementation Issues: operational precision; potential concerns about silver toxicity

DRAFT Precipitation Enhancement Modeling Analysis

Assumptions:

 10% precipitation increase on the East for the months November through March.

Precipitation Enhancement Modeling Analysis Basin-Wide Cumulative Storage Change

Average Annual (50 years) Inflows:

Deep Percolation +400 AF

DRAFT

- Stream Seepage +400 AF
- Boundary Flow +700 AF
- Change in Storage +1,500 AF

Change in Cuyama River Outflow

+2,700 AF Total Potential Benefit: 4,200 AF

Forest/Rangeland Management

- Potential Yield: up to ~3,000 AF/year
- Estimated Cost: \$500-600/acre-foot
- Planning Horizon: 5-10 years
- Description: Removal of native vegetation in forest or rangeland areas through controlled burning could reduce water consumption through decreased evapotranspiration
- Potential Implementation Issues: potential adverse effects on wildlife habitat; air quality concerns from smoke and dust; potential increase in flood flows due to reduced water interception

Sources:

- USBR, Truckee Basin Study, Dec 2015
- Bales et al., Forests and Water in the Sierra Nevada, Nov 2011

DRAFT Forest/Rangeland Management Modeling Analysis

Assumptions:

 4% decrease in native vegetation ET at the eastern small watersheds.

Future Conditions – Forest/Rangeland ManagenPRAFT Basin-Wide Cumulative Storage Change

Average Annual (50 years) Inflows:

- Boundary Flow +2,300 AF
- Stream Seepage -800 AF
- Change in Storage +1,500 AF

Change in Cuyama River Outflow +1,400 AF Total Potential Benefit: 2,900 AF

Flood/Stormwater Capture

- Potential Yield: up to 4,400 AF/year
- Estimated Cost: \$600-800/acre-foot
- Planning Horizon: 5-10 years
- Description: The addition of surface water into a groundwater aquifer through surface infiltration. Recharge locations would be determined based on soil properties, current groundwater conditions and projected surface flow conditions.
- Potential Implementation Issues: Water available for recharge may be limited by downstream water rights; requires acquisition of land for spreading grounds

Source: Santa Barbara County, Long Term Supplemental Water Supply Alternatives Report, December 2015

Stormwater Capture Modeling Analysis

Assumptions:

- Capture from 100 -200 CFS flows in Cuyama River and recharge groundwater over ~200 acres.
- During any period with appropriate flows for diversion.

Stormwater Capture Modeling Analysis

Average Number of Days in WY: 9 days/yr.

Average Volume Captured: 2,500 AF/yr

DRAFT

Stormwater Capture Modeling Analysis Basin-Wide Cumulative Storage Change

Average Annual (50 years) Inflows:

- Flood Capture +2,500 AF
- Stream Seepage -600 AF
- Change in Storage +1,900 AF

Change in Cuyama River Outflow -1,500 AF (will need to consider effects on downstream users)

Water Supply Imports via Exchange

- Potential Yield: undetermined
- Estimated Cost: \$600-\$2,800/acre-foot
- Planning Horizon: 10-20 years
- Description: Purchase water transfer or excess SWP water and exchange with water users downstream of Lake Twitchell to allow for greater floodwater capture upstream
- Potential Implementation Issues: High cost, willingness of downstream users to enter exchange program
 - Recommendation: Include for consideration for future study as part of stormwater capture analysis during GSP implementation phase

Summary of Water Supply Project Benefits

	Change in Storage	Change in Cuyama River Outflow	
Precipitation Enhancement	+1,500 AF	+2,700 AF	
Forest/Rangeland Management	+1,500 AF	+1,400 AF	
Flood/Stormwater Capture	+1,900 AF	-1,500 AF	

Total Potential Benefit: 5,000 to 9,000 AF per year

Questions and Discussion – Projects and Management Actions

- Clarifying Questions?
 - Approaches for reducing groundwater pumping
 - Analysis of potential projects and actions
- In addition to what has been presented, what other information would help you understand how sustainability can be achieved in the Cuyama Valley?

Cuyama Basin Groundwater Sustainability Agency

GSP Implementation Plan

March 6, 2019

Key Implementation Plan Components

- Detailed analysis of potential projects/actions
- Implementation schedule for management actions and projects
- Establishment of Monitoring Program
 - Coordination with monitoring entities
 - Agreements with local landowners
- Data Collection and Analysis
 - Water levels, water quality, subsidence

- Annual reporting
- GSP Five-year Update
 - Re-evaluation of thresholds
 - Review/update of numerical model
- Ongoing GSA Administration
 - Maintenance of DMS, website
 - Board/SAC meetings and other stakeholder outreach
- Financing Plan

Conceptual Project Implementation Timeline

Feasibility **Preliminary Design CEQA** Compliance Permitting **Final Design Bid & Award** Construction Start-Up

Year

Conceptual GSP Implementation Timeline

Implementation will be phased over 20 years, with 5-year updates.

Monitoring and Reporting	Preparation for Allocations and Low Capital Outlay Projects	Prepare for Sustainability	Implement Sustainable Operations
Establish monitoring networkInstall new wells	 GSA conducts 5-year evaluation/update Monitoring and reporting continues Evaluate/refine thresholds and monitoring network Refine water budget 	 GSA conducts 5-year evaluation/update Monitoring and reporting continues Evaluate/refine thresholds and monitoring network Refine water budget 	 GSA conducts 5-year evaluation/update Monitoring and reporting continues Evaluate/refine thresholds and monitoring network Refine water budget
 Develop pumping monitoring program* Set up and initiate pumping allocation program* 	 Pumping monitoring program continues* Continue implementation of pumping allocation program* 	 Pumping monitoring program continues* Continue implementation of pumping allocation program* 	 Pumping monitoring program continues* Pumping allocation program fully implemented*
 Project analysis and feasibility Extensive public outreach 	 Plan/design/construct small to medium sized projects* Outreach continues 	 Plan/design/construct larger projects* Outreach continues 	 Project implementation completed Outreach continues

&CUR

*Potential management area specific implementation

Financing Plan Elements

Basin-wide

- GSA Admin
- Monitoring
- Reporting
- GSP Updates

Funding Mechanisms

- Pumping Fees
- Assessments
- Grants & Loans

By Management Area

- Management Actions
- Water Supply Projects

By Beneficiary

New Wells

Cuyama Basin Groundwater Sustainability Agency

Wrap Up and Next Steps

March 6, 2019

Cuyama Basin Groundwater Sustainability Plan – Planning Roadmap Planning Roadmap **SGMA** Background Groundwater Workshops (English and Spanish) 101 **GSA Board Meeting** Cuyama Valley & **Basin Conditions** Standing Advisory Committee Meeting Conceptual Water Model Basin Model, Forecasts & Water Budget Sustainability Goals Sustainability Vision & Criteria Projects & **Action Ideas Management Actions** Implementation Problem Statement Plan Groundwater Groundwater Sustainability Plan Sustainability Plan Approvals 2018 2019 & CURRAN Jan Apr Jul Oct Jan Apr Jul Oct Jan