

#### Approach for Cuyama Basin Model Development

- Develop a Robust and Defensible Integrated Water Resources Model
  - Robust Model Grid
  - Agricultural and Domestic
     Water Demands
  - Include physical features affecting movement of surface and groundwater
  - Consider interaction between groundwater and surface water systems



## Cuyama Basin Integrated Water Resources Model Development





#### Data Used in the Model

Model Period: 1967-2017

Calibration Period: 1995-2015

Daily Rainfall

Daily Streamflow Reconstruction

Geologic & Hydrogeologic Characterization

Land Use and Cropping Patterns

- Soil Conditions
- Population and Domestic Water Use
- Groundwater Wells
- Irrigation Practices
- Other Data as Needed



#### Model Calibration

#### Calibration Goals:

- Develop water budgets to reasonably represent the conditions for each area
- Match short and long-term model groundwater levels to observed groundwater levels at select target wells
- Match model streamflows to observed (or reconstructed) stremflows
- Minimize overall uncertainties between model results and reported and/or observed data



#### Model Calibration: Groundwater Levels







#### Model Calibration Statistics – Basin Wide





### Water Budgets - Time Frames

### Historical Conditions

Historical hydrology, land use and population (1995-2015)

### Current Conditions

2017 land use and population 1967 - 2017 historical hydrology

### Future Conditions

Year 2040 land use and population

- Assumed to be the same as

Current Conditions

1967- 2017 historical hydrology With and without climate change



### Cuyama Basin — Adjusted PRISM Precipitation



#### **Average Annual Precipitation:**

Entire Basin: 12.6 inches

Valley Floor: 11.0 inches

Foothills: 14.2 inches



#### Cuyama Basin Land Use



### **Land Use under Historical Conditions**

Irrigated: 17,400 acres

Domestic: 520 acres

Population: 1,072

Unit Water Use: 170 GPCD



## Draft Land Surface Water Budget: Basin-Wide

# **Preliminary Draft**



## Draft Land & Water Use Budget: Basin-Wide

# **Preliminary Draft**



#### **Average Annual (20 years)**

- ☐ Ag. Pumping: 60 TAF
- Ag. Demand: 60 TAF
- Domestic Pumping: 0.2 TAF
- Domestic Demand: 0.2 TAF



## Draft Groundwater Budget: Basin-Wide

# **Preliminary Draft**



#### **Average Annual (20 years)**

- Inflows:
  - Deep Perc.
  - Stream Seepage
  - Boundary Flow
- Outflows:
  - GW Pumping



## Draft Groundwater Budget: Basin-Wide

# **Preliminary Draft**



#### **Average Annual (20 years)**

- Inflows:
  - Deep Perc.
  - Stream Seepage
  - Boundary Flow
- **Outflows:** 
  - GW Pumping

**GW Storage Change** 

-20 TAF /Yr



#### Draft Overall Water Budget: Basin-Wide

# **Preliminary Draft**





### Water Budgets - Time Frames

### Historical Conditions

Historical hydrology, land use and population (1995-2015)

### Current Conditions

2017 land use and population1967 - 2017 historical hydrology

### Future Conditions

Year 2040 land use and population

- Assumed to be the same as

Current Conditions

1967- 2017 historical hydrology
With and without climate change



### Future Conditions Cuyama Basin Adjusted PRISM Precipitation



### **Average Annual Precipitation** (50 years)

- Entire Basin: 13.1 inches
- Valley Floor: 11.5 inches
- Foothills: 14.8 inches



### Future Conditions Cuyama Basin Land Use



#### Land Use under Future Conditions

- Irrigated:16,700 acres
- Domestic:800 acres
- Population:1,072
- Unit Water Use: 170 GPCD

### Future Conditions Land Surface Water Budget: Basin-Wide

# **Preliminary Draft**



## Future Conditions Groundwater Budget: Basin-Wide

# **Preliminary Draft**



Average Annual (50 years)

#### Inflows:

- Deep Percolation
- Stream Seepage
- Boundary Flow

#### **Outflows:**

■ GW Pumping



## Future Conditions Groundwater Budget: Basin-Wide

# Preliminary Draft



Average Annual (50 years)

#### Inflows:

- Deep Percolation
- Stream Seepage
- Boundary Flow

#### **Outflows:**

■ GW Pumping



### Future Conditions Overall Water Budget: Basin-Wide

# **Preliminary Draft**





## Projects and Actions to Close the Gap Between Water Supplies and Demands

- Demand Reduction Actions
  - Pumping restrictions/allocations
    - Water accounting
    - Water metering
  - Water market
- Supply Enhancement Projects
  - Storm and flood water capture
  - Water supply imports/exchanges





## Questions and Discussion – Groundwater Modeling

- Clarifying Questions?
  - How the model works
  - Historical conditions and trends
  - Water budgets under current and future conditions
- In addition to what has been presented, what other information from the model would help you understand water resources in the Cuyama Valley?





#### Preliminary Thresholds Presentation Overview

- Purpose of presentation
- Minimum Thresholds Overview
- Measurable Objectives Overview
- Threshold Regions Overview
- Threshold Rationale Component Examples
- Preliminary Threshold Rationales
- Next Steps



#### Purposes of Presentation

- Present preliminary threshold rationales for threshold regions
- Gain consensus on recommended threshold rationales
- Gain clarification on threshold rationales in regions without a recommendation
  - Some regions have differing perspectives on appropriate threshold rationale
  - Threshold rationale options present today meet technical/regulatory requirements
  - Local control via CBGSA Board allows board to select appropriate thresholds



### Why Minimum Thresholds?

- Required by SGMA
- Establish Range of Operation in Groundwater Basin
- Protect other Groundwater Pumpers

For Example:

Keep Groundwater Levels High Enough to:

- 1. Ensure adjacent pumpers have access to groundwater
- 2. Protect access to groundwater in Community Services District well



## Minimum Thresholds and Measurable Objectives Example





### Where are Thresholds Applied?





#### Minimum Thresholds

- Indicate that above this threshold undesirable results are not occurring
  - The lowest the basin can go at this monitoring point without something significant and unreasonable happening to groundwater
- Are set on the monitoring network at each monitoring point
- Set by using a <u>rationale</u> to reach a <u>quantitative threshold</u>



### Measurable Objectives (MOs) Overview

- MOs are quantitative goals that are set to create a useful Margin of Operational Flexibility (MoOF).
- The MoOF is an amount of groundwater above the MT that should accommodate droughts, climate change, conjunctive use operations, or GSP implementation activities.
- The MoOF should be used to provide a buffer in groundwater levels so that the basin can be managed without reaching minimum thresholds during drought periods



### What if Thresholds are Not Met During GSP Implementation?

- GSP regulations and BMPs do not encourage management of discrete portions of the basin as they relate to individual monitoring wells
- For each individual monitoring well:
  - When a minimum threshold is unexpectedly reached, the GSA should investigate why, and evaluate whether the threshold is reasonable or not, given current conditions compared to conditions when the GSP was adopted.
  - Will be discussed in Management Actions Section of GSP
- As thresholds relate to the entire basin:
- This is when Regulators like The Undesirable Result is considered to occur during GSP in SWRCB can get involved XX% of representative monitoring wells (XX of 49) for minimum groundwater elevation thresholder

## Threshold Regions — a way to describe which areas use which threshod rationales

- Need a way to document how we established threshold rationales in which portions of the basin
- Allowable under regulations
- Terminology reflects use of area with different threshold rationale
- Has no management action implications
- Is not related to project and management actions in any way





#### Board Direction on Minimum Thresholds

Approved Motion from November 7, 2018 Board Meeting

Direct Woodard & Curran to use Option D to develop preliminary threshold numbers.







#### Schedule for Thresholds Discussion

- Tech Forum Oct 23
- SAC Nov 1
- Board Nov 7
- Tech Forum Nov 28
- SAC Nov 29
- Board Dec 3
- Public Workshop Dec 3
- Board Direction on Sustainability Thresholds Jan 9
- Release Thresholds GSP Section Jan 18

SAC - Jan 31

Input and Discussion

**Initial Recommendations** 

Discussion on Draft GSP Section



## Threshold Rationale Components Example Hydrograph Refresher





## Threshold Rationale Components Example Nearest to January 1, 2015





## Threshold Rationale Components Example 5 Years of Storage - 5 years before 2015





## Threshold Rationale Components Example 20% of Range





## Measurable Objectives (MOs) & Minimum Thresholds (MTs) Key Thoughts

- Thresholds in the 2020 Cuyama GSP are a \*Starting Point\* to identify what is sustainable in the basin
- No single rationale or method works across the entire basin
- Limited periods of record in monitoring in some wells cause uncertainty in defining thresholds and will require updates as more data is collected over time
- Thresholds will be updated in GSP update in 2025





## Southeastern Region

# Propose 20% of Range





Measurable Objective – 5-years of Storage

Minimum Threshold – 20% of Range below 1/1/2015 Measurement

WOODARD & CURRAN

## Southeastern Region - Advantages/ Disadvantages 20% of Range as Basis for Minimum Thresholds

#### **Advantages**

- Maintains 5 years of storage between minimum threshold and measurable objective
- Maintains groundwater elevations 6 feet below 2015 levels

#### **Disadvantages**

 Maintains groundwater elevations 6 feet below 2015 levels





## Eastern Region

# Propose 20% of Range





Measurable Objective – 5-years of Storage

Minimum Threshold – 20% of Range below 1/1/2015 Measurement

WOODARD & CURRAN

### Eastern Region - Advantages/ Disadvantages 20% of Range as Basis for Minimum Thresholds

#### **Advantages**

- Maintains 5 years of storage between minimum threshold and measurable objective
- Maintains groundwater elevations at 2017 levels

#### **Disadvantages**

- May not restore groundwater levels to 2015 conditions
- Maintains groundwater elevations at 2017 levels





## Three Minimum Threshold Options for Central Region

- Use 20% of Range below 1/1/2015 measurement
- Use 2015 measurement as minimum threshold
- Use 2015 measurement as measurable objective



# Central Region 20% of Range





# Central Region 2015 as MT

**Central Region** 



Measurable Objective – 5-years of Storage

Minimum Threshold – Measurement Closest to (but after) January 1, 2015

WOODARD &CURRAN

# Central Region 2015 as MO

**Central Region** 



Measurable Objective – 1/1/2015 (or closest Measurement, or calculated)
Minimum Threshold – 5-years of drought storage

# Central Region - Advantages/ Disadvantages of Three Options for Minimum Thresholds

#### **Advantages**

#### 20% of Range

Recognizes current conditions

#### 2015 as Minimum Threshold

Attempts to regain 2015 groundwater levels

#### 2015 as Measurable Objective

 Provides flexibility to adjust land and water use practices

#### **Disadvantages**

#### 20% of Range

Lower long-term groundwater levels

#### 2015 as Minimum Threshold

 Current levels are below minimum threshold

#### 2015 as Measurable Objective

Lower long-term groundwater levels



## Western Region

Western Region

### 2018 as MO, – 10 feet as MT



OPTI Well 127 Hydrograph

Minimum Threshold = 2322 ft.

Measurable Objective

Measurable Objective = 2332 ft

- Minimum Threshold

Well Depth = 100 ft.

→ WSE & Depth-to-Water

WSE Min = 2328 ft.

# Western Region - Advantages/ Disadvantages of Using 2018 for Measurable Objective

#### **Advantages**

- Recognizes lack of historic data
- Provides flexibility for moving forward, can adjust as needed
- Maintains estimated 5 years of storage between minimum threshold and measurable objective

#### **Disadvantages**





## Three Minimum Threshold Options for Northwestern Region

- Use 2015 measurement as measurable objective
- Minimum threshold based on subsidence & saturated aquifer thickness



## Northwestern Region

# Use 2015 as MO





## Northwestern Region

MT based on subsidence & saturated aquifer thickness



Measurable Objective – 5-years of Storage
Minimum Threshold – 225 ft. below Ground Surface Elevation

## Northwestern Region - Advantages/ Disadvantages of Three Options for Minimum Thresholds

#### **Advantages**

2015 as Measurable Objective

 Provides flexibility to adjust land and water use practices

Based on subsidence & saturated aquifer thickness

Provides more flexibility for operations

#### **Disadvantages**

2015 as Measurable Objective

Lower long-term groundwater levels

Based on subsidence & saturated aquifer thickness

Lowest long-term groundwater levels



### Next Steps/Public Involvement

- Prepare thresholds for wells in Representative Monitoring Network for review by Standing Advisory Committee meeting and consideration by the Board in January 2019
  - Check CGBSA website (cuyamabasin.org) for meeting dates
  - Members of the public are encouraged to attend the Standing Advisory
     Committee and Board meetings to provide input
- Prepare draft Thresholds GSP Section

